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ABSTRACT
Second harmonic generation (SHG) multiphoton imaging can visualize fibrillar collagen in tissues. SHG has previously shown that fibrillar

collagen is altered in various types of cancer. In the present study, in vivo high resolution SHG multi-photon tomography in living mice was

used to study the relationship between cancer cells and intratumor collagen fibrils. Using green fluorescent protein (GFP) to visualize cancer

cells and SHG to image collagen, we demonstrated that collagen fibrils provide a scaffold for cancer cells to align themselves and acquire

optimal shape. These results suggest a new paradigm for a stromal element of tumors: their role in maintaining anchorage and shape of cancer

cells that may enable them to proliferate. J. Cell. Biochem. 114: 99–102, 2013. � 2012 Wiley Periodicals, Inc.
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T wo-photon imaging has enabled collagen structures to be

visualized in tissue by second harmonic generation (SHG) [So

et al., 1998; Brown et al., 2003; König and Riemann, 2003]. For

example, Provenzano et al. [2006, 2009ab] and Campagnola [2011]

showed, with two-photon imaging and SHG, that increased collagen

density of breast tissue is related to the formation of mammary

cancer. Friedl et al. [2012] showed in vitro that disseminating breast

cancer cells preferentially invade along bundled collagen. Chen

et al. [2009] showed high regularity of collagen fibrils/fibers in

ovarian cancers, suggesting the assembly of newly-synthesized

collagen during growth. However, none of these studies investigated

the relationship of cancer cells and collagen fibrils in living mice in

real time.

In vivo multiphoton tomography, based on nonlinear detection

of endogenous fluorophores and fluorescent proteins and SHG

imaging of collagen, provide the possibility of monitoring cancer

cell behavior within three dimensional extracellular matrixes in live

mice in real time. Deep-tissue 3D imaging is achievable due to the

low absorption and scattering coefficients of near infrared (NIR)

light in the spectral range of 700–1,200 nm. NIR light is less harmful

for the tissue and cells due to the absence of significant one-photon

absorbers and due to limited sub-femtoliter fluorescence excitation

volume [König, 2008].

In the present study, high-resolution in vivo multiphoton SHG

tomography of the tumor environment in live mice implanted with

green fluorescent protein (GFP)-expressing colon cancer cells,

demonstrated that collagen structures provide for cancer-cell

anchorage and shape that may enable them to proliferate.

MATERIALS AND METHODS

MULTIPHOTON TOMOGRAPHY

The MPTflexTM multiphoton tomograph (JenLab GmbH, Jena,

Germany and MultiPhoton Laser Technologies, Inc., Irvine, CA)

was equipped with a tunable 80MHz titanium:sapphire femtosecond

laser (710–920 nm). The optical unit consists of an active optical

power attenuator to regulate the in situ power of the laser tissue

depth penetration, an active beam-stabilization device, a safety unit
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and a flexible articulated mirror-arm with its compact scan head.

The scan head consists of a fast galvo-scanning device to generate

2D (XY) scans, a piezodriven z-scanner, and high NA focusing optics

(NA 1.3). The optical arm is stabilized with a mechanical arm.

The scan head also contains a dual-photon detector unit for the

measurement of fluorescence and SHG. The overall field-of-view of

the optical system covers 350� 350mm2. The acquisition time for

one optical section is typically 7 s. Low picojoule pulse energy was

used for multiphoton excitation. The PMT1924 photodetector was

used to detect signals from both fluorescence and SHG channels.

Filter sets LP409 and BP 395/14 were used for GFP and SHG,

respectively [Uchugonova et al., 2011].

CELLS

Mouse CT26-W7-GFP/Colo 26-GFP (mouse colon cancer) were used

in this study. The cells were stably transfected with the GFP gene

using previously-described techniques [Hoffman, 2005; Hoffman

and Yang, 2006abc]. The cells were cultured in RPMI 1640

Fig. 1. Various locations of tumors in living mice were investigated with high-resolution multiphoton tomography (A, C, E). Images in panels (B, D, F) were taken under higher

magnification to visualize single cells and collagen fibers. Cancer cells express GFP and fluoresce green. Collagen fibrils, visualized by SHG, are red. Cancer cells align parallel to

collagen fibrils. Bundles of collagen fibers, varying in diameter up to several micrometers, are detected. The collagen fibrils are organized parallel and perpendicular to each other

with a wide interfiber spacing. SHG of collagen and GFP were excited simultaneously at a wavelength of 790 nm. Filter sets LP409 and BP 395/14 were used for GFP and SHG,

respectively.
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supplemented with 10% fetal bovine serum (FBS) at 378C in a

5% CO2 incubator.

MICE

Colo26-GFP cells (2� 106) were transplanted subcutaneously in

8-week-old non-transgenic nude mice bred at AntiCancer, Inc.

(San Diego, CA). All animal studies were conducted in accordance

with the principles of and procedures outlined in the NIH guide for

the care and use of laboratory animals under assurance number

A3873-1.

SKIN-FLAP WINDOWS

Cancer cells in the tumor microenvironment (TME) were visualized

by multiphoton tomography after a skin flap was raised over the

tumor. The animals were anesthetized with a ketamine-mixture of

Ketaset and PromAce (both from Fort Dodge Laboratories, Fort

Dodge, IA) and Xylazine HCl (American Animal Health, Wisner, NE).

An arc-shaped incision was made in the skin, and s.c. connective

tissue was separated to free the skin flap. The skin flap could be

opened repeatedly to directly image the cancer cells and simply

closed with a 6-0 suture [Yang et al., 2002].

RESULTS AND DISCUSSION

High resolution multiphoton fluorescence and SHG tomographic

images of tumors were acquired from living mice with sub-

cutaneously-grown Colo 26-GFP tumors. Bundles of collagen fibers,

varying in diameter up to several micrometers, were detected.

Modified collagen fibrils were observed to be organized parallel and

perpendicular to each other with a wide interfiber spacing. Collagen

SHG and cancer-cell GFP were excited simultaneously at a

wavelength of 790 nm.

As can be seen in Figure 1, the cancer cells, which are readily

visualized by GFP expression, are exquisitely aligned along the

collagen fibrils, visualized by SHG. The cancer cells appear

elongated.

The results suggest that collagen fibrils are essential for cancer

cell proliferation. The cancer cells appear stretched as they align

along the collagen fibrils. It has been known for a long time that cells

can be anchorage dependent [Benecke et al., 1978; Farmer et al.,

1978; Ben-Ze’ev et al., 1980; Berezovska et al., 2006; Nelson and

Bissell, 2006; Ingber, 2008]. When deprived of their anchoring

substrate, anchorage-dependent cells lose the ability to proliferate.

The anchorage requirement appears related to the need for cells to

acquire a specific shape in order to proliferate [Folkman and

Greenspan, 1975; Folkman and Moscona, 1978]. Our results suggest

that collagen fibrils provide the scaffolding for cancer cells to

anchor and acquire optimal shape in vivo. Very highly malignant

cells, such as those which grow as ascites, appear to lose their

anchorage dependency.

The results of the present report develop a new paradigm for the

collagen-fiber stromal element of tumors: their role in maintaining

proper anchorage and shape for cancer cells that enable them to

proliferate. Collagen fibers in the TME thus present a new visible

target for cancer therapy using powerful two-photon imaging

[Uchugonova et al., 2011; Rompolas et al., 2012].
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